Пусть даны плоскость и не лежащая на ней точка.

Перпендикуляром, опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости.

Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.

Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости.

Конец отрезка, лежащий в плоскости, называется основанием наклонной.

Отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

На рисунке из точки А проведены к плоскости перпендикуляр АВ и наклонная АС. Точка В - основание перпендикуляра, точка С - основание наклонной, ВС - проекция наклонной АС на плоскость .

Смотри также опорную задачу №3.

Теорема 4
О ТРЕХ ПЕРПЕНДИКУЛЯРАХ.
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной.
И обратно: Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Доказательство.

[ Главная | Перпендикулярность прямой и плоскости | Признак перпендикулярности прямой и плоскости | Свойства перпендикулярных прямой и плоскости | Перпендикуляр и наклонная к плоскости | Теорема о трех перпендикулярах | Перпендикулярность плоскостей | Признак перпендикулярности двух плоскостей | Тематический контрольный тест | Опорные задачи]